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Abstract 

A method is devised for giving a physical interpretation to the customary Schwarzschild 
coordinates in the vicinity of a charged or uncharged isolated mass. The construction is 
accomplished by introducing systems that are allowed to freely fall in toward the mass 
from infinity (drift-systems). It is demonstrated that the Schwarzschild spatial coordinates 
and their increments have a full physical significance in terms of rod and clock measure- 
ments performed in the drift-systems. The time coordinate and its increment are not so 
amenable to treatment and cannot be considered as having been given such physical 
significance. In the discussion the Schwarzschild metric about an uncharged and charged 
mass is derived, in part, by heuristic classical arguments employing conservation of energy. 
The arguments are then shown to be valid by consulting the Field Equations. In the 
derivation the gravitational singularity (at 2GM/C 2) takes on the significance of being the 
location at which a drift-system achieves the speed of light relative to a proper system at 
the same point. 

1. Introduction 

One of  the ou ts tand ing  cont r ibu t ions  to  general  relat ivi ty is Schwarzs- 
chi ld ' s  so lu t ion  for the metr ic  a b o u t  an isola ted mass.  This is so, of  course,  
since the three  'c rucia l  tests '  o f  the Genera l  Theory  consist  of  exper iments  
executed in s i tuat ions descr ibed by  Schwarzschi ld ' s  metric.  In  connect ion  
with  this conf i rmat ion  it has been po in ted  out  by  several  au thors  (Eriksson,  
1960; Balazs,  1959; Schiff, 1960; Schild, 1960) tha t  the Schwarzschi ld  
so lu t ion  can also be ob ta ined  wi thou t  the full appa ra tus  o f  the Genera l  
T h e o r y - - t h a t  is, wi thout  the use of  the Fie ld  Equat ions .  These invest igat ions 
are i m p o r t a n t  for  two reasons :  (1) they perhaps  demons t ra te  the uncomfor t -  
able  fact  tha t  the successes o f  general  relat ivi ty can also be expla ined by  
other  (less comprehensive)  theories ;  (2) these other  const ruct ions  apparen t ly  
lead,  by their  very nature ,  to the physical  significance o f  the Schwarzschi ld 
coord ina te  system. 

I t  is wi th  the la t ter  aspect  tha t  the present  paper  is concerned.  Specifically, 
we are concerned  with an expl ica t ion  of  the physical  significance o f  the 
Schwarzschi ld  metr ic  within the framework of  the Field Equations. Despi te  
the fact  tha t  p r o b l e m  area  (2) has been discussed in the l i tera ture  as 
ment ioned ,  i t  is felt  tha t  these discussions are no t  sufficient for  our  purpose  

267 



268 JACK COHN 

since, firstly, their purpose is to construct alternate (to the Field Equations) 
procedures for constructing the Schwarzschild metric. Consequently, they 
do not demonstrate whether or not their postulates are consequences of the 
Field Equations; secondly, these discussions are usually somewhat sketchy 
and do not, in our opinion, take due account of some of the subtle points 
involved. These points will be mentioned at their appropriate places in the 
context of the paper. We only note one example now; the heretofore 
unmentioned fact that the treatment of the Schwarzschild time coordinate 
in the references cited is incomplete. 

Actually, the problem under consideration here is a special case of the 
general problem of devising physical interpretations for the coordinates 
used in general relativity. In general, when a problem is solved via the Field 
Equations one obtains the metric g , ,  expressed as a function of coordinates 
(x~... x 4) whose physical significance is unknown. More explicitly, one can 
relate the coordinate differentials (dx ~) to the results of rod and clock 
measurements occurring in a local inertial system at the point of interest, 
but this in no way constitutes an interpretation of these differentials in terms 
of rod and clock measurements relative to some particular observer. 
That is, in order to give physical significance to the (dx ~) one must find an 
observer such that when two neighboring events occur, the observer can, 
by means of rod and clock measurements, directly determine (without 
reference to another observer's measurements) the associated differentials. 

In the following discussion a method will be given for constructing the 
Schwarzschild line-element which at the same time gives it a physical 
interpretation as defined above. The method used demands the appearance 
of a gravitational singularity whose physical significance thus emerges 
naturally in the course of the derivation. 

The following considerations are divided into essentially two parts. The 
first is concerned with the Schwarzschild line-element about a symmetric 
uncharged mass, and the second has to do with similar considerations 
concerning a symmetric charged mass. In each part the following program 
is followed: using the principle of strong equivalence one proceeds as far 
as possible toward the construction of the line-element using rod and clock 
measurements in space-time. A point is reached where an heuristic argument 
is invoked to yield the desired results. The Field Equations are then 
consulted and it is shown that the heuristic arguments are indeed correct. 
Thereby the entire consideration is brought within the framework of the 
General Theory as it is usually conceived. Although the heuristic parts of  
the considerations could have been omitted by appealing directly to the 
Field Equations it was felt that they lend an enrichment especially in the 
discussion on the charged mass. 

2. Uncharged Mass 

In this section we are concerned with a derivation of the Schwarzschild 
line-element in the vicinity of an uncharged mass. Toward this end we shall 
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introduce the notion of a 'proper system'. Generally, a proper system is a 
local inertial system which is momentarily at rest with respect to the matter 
in its immediate vicinity. In our case we may imagine a framework of non- 
rigid rods (of negligible mass) attached to the central mass. At any point 
(in space-time) then, a proper system is a local inertial system momentarily 
at rest with respect to the rod at its location at the moment under considera- 
tion. In the following discussion it is important to bear in mind that we are 
constructing a coordinate system relative to which the proper systems are at 
rest.t 

Consider then a spherically symmetric uncharged mass M, where it is 
assumed that space is pseudo-Euclidean at great distances from M.~ It will 
be useful in the following development to introduce the notion of a 'drift- 
system'. Drift-systems are infinitesimal cartesian coordinate systems 
attached to point mass (the mass being very small) particles which are 
released from rest at infinity at various times and are allowed to drift in 
toward M. In fact, we assume that there is a spherical layer of such systems 
at rest at some very great distance from M with M as center. Later we shall 
consider releasing particular systems at particular times. In the following 
we shall derive the Schwarzschild line-element by considering the relation- 
ship between measurements made in the drift-systems and measurements 
made in proper systems at the point of  interest. Actually, this relationship 
is used as a vehicle for defining the coordinate system in terms of measure- 
ments made solely in the drift-system. 

Now consider two near neighboring events (in 4-space) that occur in the 
vicinity of  M. For  the time being, we shall only consider events which both 
have a spatial location (in 3-space) on the 'track' (in 3-space) formed by 
some drift-system.w If  these events are witnessed in a proper system at the 
point (in 4-space) of interest we have 

d~r2__ 02 2 02 - - A  s + C ,4~ (2 .1 )  

where dr  is the world-length between the events and A~ ~ At ~ denote the 
spatial distance and time interval respectively between the events as perceived 
in the proper system. Let At and/1 s denote the time and spatial intervals 
between the same events as perceived in a drift-system which was released 
from its place of  rest at such a time that it arrived at the place of  interest at 
the instant one of the events occurred. It is important to note that, because 
of the symmetry of the problem, only one of the drift-systems released at 
some particular time will qualify. Furthermore, the state of motion of a drift- 
system when it goes through the point of  interest will be independent of its 
time of  release, due to the static nature of  the situation. 

t A clear formulation of this requirement can be found in Moller, C. (1962). Theory of 
Relativity, Chapter 8. Oxford University Press. 

:~ The statement that the mass is spherically symmetric witl achieve its definition in the 
course of the following discussion where several assumptions concerning the symmetry 
of the problem are made. 

w In the following we shall speak of the 3-space projection of the space-time path as the 
'drift-ITack'. 
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As a guide to our thinking we momentarily restrict considerations to 
particular pairs of events. 

Consider then two neighboring events occurring at the same place and at 
different times (in the coordinate system under construction) along a drift- 
track. Then As~ = 0 if the time interval is sufficiently small. Therefore, we 
must have 

At0 
At = ~/[1 - (V2/C2)I (2.2) 

dr 2=  C 2 A t  02 (2.3) 

where V is the momentary speed of the drift-system relative to the proper 
system--both systems being momentary Lorentz frames.t We now 
tentatively define the time increment in the coordinate system under con- 
struction so that it is given by equation (2.2) in case the events occur at the 
same place. 

Now consider two events that occur (along the same drift-track) at the 
same time but at different locations (in the coordinate system under con- 
struction). In this case we must have 

At~ = 0; dr 2 = --Z]02 (2.4) 

Now, if the length of As ~ measured in the drift-system is called ,J,, we have 

3 ,  = ~/[1 - (V2/C2)I A o (2.5) 

where V is the unique speed of the drift-system. Note that z], # A s. In the 
case of z],, signals are send out fi'om the proper system so that they arrive 
in the drift-system simultaneously. 

If  we decided to send out the signals simultaneously from the proper 
system we would have 

1 
,~ '  = A, ~ (2.6) 

V [ -  (v2/c2)1 

Now we shall decide between equations (2.5) and (2.6) as a tentative defini- 
tion of spatial increment in the case when the events occur simultaneously 
(in the coordinate system under construction) and at different places. We 
notice that zJs' is not fully determined by measurements in the drift-system 
alone, since an observer in the proper system must send out signals simul- 
taneously. To determine z]~ however, an observer in the drift-system must 
simply measure the length of a segment of drift-track. This also requires 
that light signals be sent out from the proper system. But in this case the 
observer in the proper system need not have any knowledge about the 
timing of the signals he sends out. We decide, therefore, in favor of equation 
(2.5) as the definition of coordinate increment for two events occurring at 

t Here we are introducing the principle of strong equivalence. Note also, that in view of 
the preceding discussion Vis unique. 
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different places at the same time, since measurements made solely in the 
drift-system are involved.t 

We now extend our definitions by taking equations (2.3) and (2.5) as 
the definitions of the increments in time and space for any pair of  events 
(along the same drift-track). That  is, we are dropping the qualifications 
that initially accompanied these definitions. In addition, in the case that 
two events occur at neighboring spatial locations and arbitrary times we 
define z] s in the following way: the locations of the events are held fixed but 
their times of occurrence are changed until both events 'occur' in the domain 
of a proper system at the point of interest. A~ ~ is then recorded and ,J, is 
determined according to equation (2.5). 

From equations (1), (2) and (5) we can now write for the world-length 
between two events (on the same drift-track), 

dr 2 
d'r2 = -  1 --  ( V 2 / C  2) ~- C2[1 - ( V 2 / C 2 ) ] d t 2  (2.7) 

where we have replaced z] s and A~ by the more suggestive symbols dr and 
dr, respectively. 

So far we have essentially just defined new coordinate increments which 
are compatible with the requirement that the proper system at any point be 
momentarily at rest with respect to the coordinate system under construc- 
tion. In addition there is a rather subtle assumption involved when we write 

dr = ,L; dt = A, (2.8) 

since we are hem assuming that ,J, and A, are increments in the variables 
r and t.:~ We will return to this point shortly. For  the present we make no 
use of equation (2.8). 

Having arrived at equation (2.7) it seems as if we can go no further 
without appealing to additional assumptions. We therefore make the 
following heuristic considerations: when a drift-system is very far from M, 
we have from Newtonian theory that 

GM 
�89 V z = (conservation of energy) (2.9) 

r 

where Vand r are the momentary speed and separation of  the drift-system 
relative to M, It is now assumed, under the principle of strong equivalence, 
that this relation holds exactly for all time as the drift-system approaches M. 

In order to utilize this assumption we must redefine V and r so that they 
have meaning in the context of  general relativity. Accordingly, Vis defined 
as the momentary speed of the drift-system relative to the proper system at 
the point &interest,  and r is to be defined by the relation 

r -  ~ = E & (2.10) 

~" In relation to equations (2.6) and (2.2) no concern has been expressed in the literature 
as to why the radicals should be in the numerator or denominator. 

$ This point does not seem to have been stressed in the literature cited. 
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where ~ is a constant that will be determined shortly, and the summation 
extends from the point in question in toward M (how far in will be deter- 
mined presently). Then r is, to within an additive constant, the distance as 
measured by a drift-system observer-traveled from the point in question 
along the drift-track toward M. 

Equation (2.9), together with the included definitions of  Vand r, comprise 
our heuristic assumption. 

With this assumption we now have 

2GM 
1 - (V2/C 2) = I rC 2 (2.11) 

so that equation (2.7) becomes 

drZ -drZ C2 .( -~T-]2GM'~ dt 2 2 G - - - - ~  + 1 - (2.12) 

r C  2 

which is the Schwarzschild line-element for events on the same drift-track. 
There are several points needing clarification. First, we can easily evaluate 

the constant ~ appearing in equation (2.10) by combining equations (2.5), 
(2.9) and (2.10) to give 

Z,/( r -  ~ = 2 ~/[1 - (V2/C2)]A= ~ = 1 rC 2 ] A= ~ (2.13) 

where the summation extends from the point in question in toward M--as  
far as possible--which is seen to be the point r = ro, where 

rom 

This is also the point where V = C. 
It follows then that 

2GM 
C z 

2GM 

(2.14) 

~z- ro = C2 (2.15) 

and r is fully defined. We notice of course, that the gravitational singularity 
(at r = ~ = to) very naturally enters the construction, and further, it is just 
the point where V becomes equal to C.I" 

Secondly, we must consider the problems of the differentials dr and dr. 
Concerning dr: r was actually defined by the relation (equation (2.10)] 

r-.=EA= 
In m'der to be able to consider dr = z]= it must be that for two events occurring 
at neighboring locations (along a drift-track) and arbitrary times the differ- 
ence in their r values is just the corresponding A=. According to the discussion 

t I n  cont ras t ,  McVit t ie  defines a non-phys ica l  speed, q, in such  a m a n n e r  tha t  q = 0 a t  
r = ro. See McVittie,  G .  C. (t  962). General Relativity and Cosmology, p. 85. The  Univers i ty  
of Illinois Press. 
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prior to equation (2.7) the As are completely independent of the times at 
which the events occur. Therefore, the relation As = dr is valid, where r 
is given by relation (2.10). 

Concerning dr: here the problem is somewhat different. We haven' t  yet 
defined a coordinate t whose change can be identified with what we have 
defined as dr. A possible way of defining t might be as follows: we choose a 
zero time at infinity (where the drift-systems are initially at rest and space is 
Galilean and all clocks can be synchronized). We then release any particular 
drift-system at such a time that it goes through the point of  interest at the 
instant the event in question occurs. We might define t by the relation 

A t ~ (2.16) 3" t 
a/[1 - (V2/C'-)] 

where the summation extends from zero time to the time the event in question 
occurs, as the drift-system goes from its initial location to the location of the 
event. The At ~ here signify the successive time increments measured in the 
appropriate proper systems situated along the drift-track of the incoming 
drift-system. 

Unfortunately, if we apply this definition to two neighboring events that 
occur along a drift-track at such times that a drift-system cannot travel 
from one location to the other in the allowed time interval, then the differ- 
ences in these times is not given by the above summand. The proof  goes as 
follows: 

Consider a given drift-track upon which two neighboring events occur, 
at locations 1 and 2 at the times t~ and tz respectively. Then we can write 

t~ = tl | +t[n;  t2 = tz ~ + t~" (2.17) 

where t,~~ ~) is the time spent at infinity (after zero time) before the drift- 
system is released which arrives at location 1 (2) at time tl(tz); and 
ti"(t~") is the time required for the drift-system after release to arrive at the 
location 1 (2)--for  example 

At~ (2.18) 3" t~ n 
z . . ,  [1 - ( v 2 / c 2 ) ]  

the summation beginning at the time the drift-system is released and ending 
at the time of its arrival at the location in question. Now consider the same 
drift-track again with the same event occurring at location 1 at time ft. 
Let the drift-system which arrives at location 1 continue on until it arrives at 
the same location 2--which will be at the new time say, t 2 ' .  The events at 
times t~ and tz' are therefore 'connected' by a drift-system. Now we have 

P teO tin t2 = t2 + tz (2.19) 

and since location 2 is the same in both cases we must have 

t~ i" = t~" (2.20) 
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In the latter case we must have 

t 2 '  - -  t l  = t ;  in - -  tl n = A t  (2.21) 

since these points are 'connected'  by a drift-system. Therefore we have 

(t2 - h) = (tz = - tl ~) + (t; i" - t i")  = (t2 ~~ - tl ~) + At (2.22) 

Now when the events at location 1 and 2 are not connected by a drift-system 
we know that 

t~ ~176 - t2 c~ r 0 (2.23) 

Therefore in this case 

A t  • ( t2  - -  tl) (2.24) 

which was the statement to be proven. t  

There are other possible ways one might define t but they meet with the 
same objection. This problem seems related to the fact that in order to 
associate a time with an event, a drift-system must pass through the point 
in question at the instant the event occurs. There are thus two requirements 
to be met. In the definition of r and dr the only requirement was that the 
drift-system pass through the point of interest--at  any time. This difference 
in turn is apparently due to the fact that we can preserve in this static 
p rob lem-- fo r  all time the location of  an event by merely requiring the event 
to leave a 'spot '  at its location of occurrence. However, there seems to be 
no way of preserving the time of an event over all space, that is, of  identifying 
the same time at different points of  space. 

In light of  this discussion, the term involving d t  2 in equation (2.12) must 
be interpreted carefully. In general, we do not even attempt to define a t 
for an event. We only consider At, which is not necessarily a time increment 
- - b u t  what we may call a time duration. We can still, however, treat At 
as the differential of  a time coordinate in certain cases--like the motion of a 
drift-system. In describing such a process it is legitimate to define dt by the 
relation 

dt = At (2.25) 

This is permissible here since we are only considering pairs of  events 
'connected' by drift-system motions. 

3. Rigorous Considerations 

In the preceeding considerations the form of the Schwarzschild line- 
element was constructed. The argument was rigorous except at the point 
where the heuristic assumption that 

G M  
-} V 2 = _ _  

r 

t This point does not appear in the literature cited. 
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was made, with a particular interpretation given to V and r. I t  will now be 
demonstrated that equation (2.9), together with the assumed interpretation 
of V and r, follow from the Field Equations and the Equations of  Motion. 

Now, given a spherically symmetric uncharged mass M, and requiring 
that  space be Galilean at great distances, one has, according to Schwarzs- 
child (Jeffrey, 1921), the following expression for the line-element 

dr 2 -  -dr-------~2 r2sin2Od~Z-r2dO2 + C2 1 rC z ]dt 2 (3.1) 
I _ 2 G M  

rC 2 

At present no physical interpretation for r and t is assumed,I" the above 
expression being just a formal solution to the Field Equations. 

Using the metric f rom this expression in the geodesic equations of  motion 
one obtains the following relations+ 

d2r ldA{dr~ 2_  (d~) 2 
dr 2 + 2 -dr \dr] r exp ( -a )  - r sin 2 0 exp (-~)  x 

d2o 2drdO o dr 
dr a + rdrdr  sinOcos \dr]  = 0  

d 2 4 ' +  2cot  O ) 4 ~ r  = 0 2drdr dC dO 
r3 Z, 

d2 t dv dr dt 
+ 0 

dr 2 dr dr dr 
(3.2) 

where 

eV= exp (-A) = (1 - ?GM]rc z ] (3.3) 

Then for a freely moving point particle which is released from rest at any 
finite r we have dc~/dr = dr~dr = dO~dr = 0 at the point of  release. From the 
second and fourth equations above, this implies that for such a system 
d6/dr = 0 and dO~dr = 0 throughout the entire motion. Therefore, drift- 
systems are characterized by constant 0 and ~b. One then obtains as the first 

t It is being assumed, however, that the Schwarzschild coordinates (r, 0, 6) of any 
point which is fixed relative to our framework of rods connected to M are constant in 
Schwarzschild time. This implies that the proper systems introduced earlier are the same 
as the local inertial systems momentarily at rest relative to the above formal Schwarzschild 
coordinate system. 

:~ Tolman, R. C. (1958). Relativity Thermodynamics and Cosmology, pp. 206-207. 
Oxford University Press. 
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integrals of the motion from the first and fourth equations above, the 
relations 

ea{drl z e, c 2 ( d t ]  2 
\ d r /  - \ d r ]  + 1 = 0 

c { d t ] = k e x p ( - v )  (3.4) 
\d~-] 

where k is a constant. 
Now, letting r --+ 0% corresponding to our definition of a drift-system, 

we have exp(-v) -+ 1 and dr~dr -+ O. Further then, as r -+ oz , dt/d~" -+ C -1. 
Therefore, the second of equations (3.4) gives 

~ = 1  (3.5) 

for drift-systems. Therefore, the first of equations (3.4) becomes 

( dr~ 2 2 G M  

dr] rC  2 
(3.6) 

Now let/Is~176 denote distances and times associated with the incoming 
drift-system as measured in the proper system. From equation (3.1) as 
applied to a drift-system we have 

dr dt 
(3.7) 

since dO = 0, d~ = 0 for a drift-system. The speed of the drift-system relative 
to the proper-system at any particular point is given by 

Now, 

dr drd t  dt 1 
d r =  dtd~-; dr  - C exp (-v) (3.9) 

from the second of equations (3.4). Therefore, 

d t ]  = C2 exp (2v) \d-c] 

Now combining equations (3.8), and (3.9) and (3.10) we obtain 

(3.10) 

2 G M  
v '  = (3.11) 

r 
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o r  

~} V2 = GM (3.12) 
r 

which was the equation (2.9) to be derived.t 
Further, referring back to equations (3.7) we can now write 

/It ~ 
dr = ~/[1 - (V2/C2)] A, ~ dt = V'[1-- (VZ/C2)] (3.13) 

Therefore, 

r + constant = ~ As (3.14) 

in agreement with the defining equation (2.10) on r. 
In summary, we have constructed the Schwarzschild line-element about 

a symmetric uncharged mass as it pertains to any pair of  events on the same 
drift-track. The coordinate r and its differential dr have been given full 
significance in terms of measurements performed with physical rods by an 
observer in the drift-system. In these measurements the proper system does 
not have to be consulted.~- In this sense we have not found the full signifi- 
cance of  t or dr. First, because we have not found a way of determining t in 
terms of rod and clock measurements depending solely on measurements 
performed in the drift-system; and second, because in general we cannot 
identify a change in t with the quantity dt as measured in a drift-system. 

Therefore, we have only succeeded in giving full significance to the 
r coordinate. 

The restriction to events occurring on the same drift-track will be removed 
after considering the case of the charged mass. The customary full form of 
the line-element will then have been constructed for the cases of the charged 
and uncharged mass--with full significance having been found for the 
spatial part of  the line-element. 

4. Charged Mass 

In this section we are interested in constructing--with physical significance 
- - the  Schwarzschild line-element about a spherical mass M carrying a 
uniform charge q. Since these considerations will be so similar to those for 
the uncharged case, the discussion will be quite brief. 

In analogy to the preceding section, we first make the following heuristic 
assumptions: 

(1) The total gravitating power of  the charged mass is determined by M. 
That  is, the gravitating power of the charge q is already included in what 
we call M. 

t Us ing  these same re la t ions  it is easy to  show for a drif t -system released at  any  speed 
tha t  v = C a t  r = to. 

That is, the drift-system observer needs no measuremental results from the proper 
system in order to make his own measurement. 
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(2) Conservation of energy, applied to a drift-system, holds in the classical 
form with suitable interpretations given to the variables involved. 

We shall first apply (1) and (2) to see what form conservation of  energy 
takes for a drift-system. For the moment, the argument is essentially 
Newtonian. Consider a drift-system approaching M. At some instant when 
their mutual separation is r, the drift-system will be exposed to the 
gravitational action of  M minus the gravitational mass of the electric field 
already penetrated. This fottows from (1). The mass of the electric field 
already penetrated is easily calculated as follows: the electrostatic field 
energy W beyond r is given by 

f e IV 1 E2 d3 x = - -  (4.1) 
= ~  2r 

The gravitational mass associated with this energy is given by 
q2 q2 

2rC2.2 = rC 2 (4.2) 

The factor two appears since we know from other considerations-~ that 
electromagnetic fields are twice as effective gravitatively as mechanical mass. 

Therefore, when the separation between the drift-system and M is r, 
the force of  attraction on the drift-system (divided by its mass) is 

G ( M -  q2 ] 1 
r~5] ~ (4.3) 

Equating the work done (per unit mass) to the change in kinetic energy 
(per unit mass) of the drift-system we have 

q2 1 
f G ( J t l - r ~ 5 ) ~ d r =  �89 (4.4) 
r 

And this gives the relation 

I - ( V 2 / C  2)=1 2GM Gq 2 
rC 2 k rZ C4 (4.5) 

Now, proceeding exactly as in the case of the uncharged mass, we obtain 

d.cZ = dr 2 C2 ( 2GM i- Gq2 
2GM Gq 2 + \1 rC 2 ~ ]  dt 2 (4.6) 

1 r~ T ~ r2 C4 

which is the line-element about a charged mass as derived by Jeffrey (1921). 
Finally, it is also straightforward to demonstrate that assumptions (1) 

t See for instance, Tolman, R. C. (1958). Relativity Thermodynamics and Cosmology, 
p. 285. Oxford University Press. 
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and (2) are valid consequences of the Field Equations, and the geodesic 
equations of motion as applied to the (neutral) drift-systems. 

5. Extension 

The preceding discussion consisted of a construction of the line-element 
about an uncharged and charged mass as it pertains to any pair of neighbor- 
ing events whose spatial locations are on the same drift-track. We now 
finally note that since the drift-systems are released from a sphere of such 
size that it lies in the region of  space which is Galilean, we may immediately 
generalize the derived line-elements so that they apply to any pair of 
neighboring events by just adding the term, -r2dO 2 -  r 2 sin 20d(~ 2, to &.2, 
where 0 and ~b have their customary significance. 
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